US009417992B2

a2 United States Patent

(10) Patent No.: US 9,417,992 B2

Huang et al. 45) Date of Patent: Aug. 16, 2016
(54) WEB PORTAL API TEST REPORT (56) References Cited
GENERATION
U.S. PATENT DOCUMENTS
(71) Applicant: Oracle International Corporation, 7,016,800 B1* 3/2006 Nguyen GO6F 11/3696
Redwood Shores, CA (US) 702/108
7,506,311 B2* 3/2009 Subramanian GOGF 11/3664
714/25
(72) Inventors: ShinJie Huang, Belmont, CA (US); 8,091,072 B2 12012 Shah et al.
Bhupendra Mohanlal Patel, Redwood 8,321,839 B2* 11/2012 Slone GO6F 11/3684
Shores, CA (US) 717/124
8,443,381 B2* 5/2013 Nagahara GOGF 11/3668
719/320
(73) Assignee: Oracle International Corporation, 8,862,950 B1* 10/2014 Ginsberg GOG6F 11/3688
Redwood Shores, CA (US)) 714/25
9,021,443 B1* 4/2015 Lachwani GOGF 11/3664
717/124
(*) Notice: Subject to any disclaimer, the term of this 2003/0182457 Al* 9/2003 Brewin GOGF 8/51
patent is extended or adjusted under 35 006/0101397 AL 52006 M a 719/310
€rcer € .
US.C. 154(b) by 0 days. 2006/0236327 AL* 10/2006 T oo GOGF 11/3664
719/328
(21) Appl. No.: 14/864,025 2007/0168973 Al 7/2007 Crihfield
2011/0078790 Al* 3/2011 Fazunenko GOGF 9/468
726/22
(22) Filed: Sep. 24, 2015 2014/0040864 Al™* 2/2014 Li .ccoovvnivvancns GOGF 9/44521
717/126
(65) Prior Publication Data OTHER PUBLICATIONS
S. Mishra, APIs now easy with JUNIT, Mar. 2013, 22 pages.*
US 2016/0085662 Al Mar. 24, 2016 Dawson et al., Testing class libraries for RTSJ safety, Sep. 2008, 7
pages.*
Kim et al., REMI: defect prediction for efficient API testing, Aug.
Related U.S. Application Data 2015, 4 pages.*
. L. C. McManis; “Java Indepth How-To Take an In-Depth Look at the
(60) Provisional application No. 62/054,593, filed on Sep. Java Reflection API”; Javaworld; Sep. 1, 1997.
24,2014.
* cited by examiner
(51) Int.ClL Primary Examiner — Thuy Dao
GOG6F 9/44 (2006.01) (74) Attorney, Agent, or Firm — Miles & Stockbridge P.C.
GO6F 1136 (2006.01) (57) ABSTRACT
(52) US.CL A system for generating application programming interface
cPC ... GO6F 11/3668 (2013.01); GOGF 11/3604 (“API”) test reports for a software application derives one or
(2013.01) more Java APIs to be tested from the software application and
(58) Field of Classification Search derives Java Unit (“JUnit”) test methods used to test the Java

CPC GOG6F 11/3684; GO6F 11/3672; GO6F
11/3688; GOG6F 11/3664; GOGF 11/3668;
GOG6F 11/3604

See application file for complete search history.

APIs. The system then maps each Java API with a corre-
sponding JUnit test method and generates one or more test
reports.

18 Claims, 12 Drawing Sheets

——

\4
API Test Report Generator 402
{Gather ALL Tests, Gather Info,
Generate Report)
- Support All JUnit Test format
Support any custom Test to

Software Unit Tests for Alpha
module 3 | _|
module 1 module 2 Test
Test Test (20 JUnit
(10 JUnit (0 Test) 3,30
3 Tests) Junit4
tests)
4 ==
— \\
module 4 Test module 5
(custom Test in Test
diff format) (3 Junit 4
Tests)

h 4

include to the report

Support any exclusive list, if
necessary.

Can be enhanced with future
annotation or custom list

US 9,417,992 B2

Sheet 1 of 12

Aug. 16, 2016

U.S. Patent

0zt

12pIAQId JUBILOD

001

[y
Janlag uonesyddy

101
Josmolg qaM

US 9,417,992 B2

Sheet 2 of 12

Aug. 16, 2016

U.S. Patent

ST
s

aseqeleq

TN
7

| |
! H
| 7T Aowsyy T | ! —
: g1 or wayshs N 8¢ m
| 4 _ [OAUOD) JOSING |
| jijguonound mczwm._. mc_wm(_mao | J y i
" jeuonippy |dV 1BHOd g8AA "
. < M
| \mzﬁ M\V m
_ P |
" - |
y =
| M _
: N 9z
7T sng o pieoghey)
N oL
i
w
..... oo H
] ;
— L pe—
55 0z * |74
ce oone(g M feydsiq
$10888004d UOREDIUNWIWO)) A— .
H
i
e

U.S. Patent Aug. 16, 2016 Sheet 3 of 12 US 9,417,992 B2

305

e

i

%

300

R,

o

308

306
303

US 9,417,992 B2

Sheet 4 of 12

Aug. 16, 2016

U.S. Patent

ssEd
584
Do

saey

1014

Ely

e e e e s oar aw W oA W W W e m MmO M A W WL W WM e e me e A ae me e e om W o w w W

uotay saulap 15aL Idy

I

SRS

PROGasa

PPORRRESS;
TPowaISH

aposygde

vRowsgde

cpogape
Toomapde

SR WDT
R WO
BB BIO
Spmin s

SR 0T

b4

T T L I L T T S T T T T T I

014

B S S g A Y

Wow m e e e e A L L W e an W e TR W e A m D W e B W W W W W W A e A W W W e 6w W W w e e e A W e we W e

iy

US 9,417,992 B2

Sheet 5 of 12

Aug. 16, 2016

U.S. Patent

0oe

US 9,417,992 B2

Sheet 6 of 12

Aug. 16, 2016

U.S. Patent

009

U.S. Patent Aug. 16, 2016 Sheet 7 of 12 US 9,417,992 B2

700

Fig. 7

701

US 9,417,992 B2

Sheet 8 of 12

Aug. 16, 2016

U.S. Patent

008

uRH 7

A Wiy re

ks

1 |

G

HRU SE

UL Y

R B

EOERITEY

ke

BEE FL

RS B e

G ED
Hi g TREETH

Argin DL R

H RIS e

=

SR T

"y

LR

[
™

BRI GL

LA 7

U.S. Patent Aug. 16, 2016 Sheet 9 of 12 US 9,417,992 B2

900

US 9,417,992 B2

Sheet 10 of 12

Aug. 16, 2016

U.S. Patent

I

4417

‘ojul J8yen) ‘s|dy 11V J8uien) a
Jojesauac) yodoy 1891 |dV

(poday sjelouan

oL 'Bi4
(Idv 01
(1dV €) wioysno)
G 9|npouwl f 8|npowl
\I\I\u\\\\i\.\‘

[

//1/

(IdV 09) (1dv 0) (1dv 01)
¢ a|npow Z 9|npouw L 9|npow
eyd|y a4emyos

US 9,417,992 B2

Sheet 11 of 12

Aug. 16, 2016

U.S. Patent

L "B

<

24NN} YUm pasueyus ag ue)d
11 ‘181] dAIsn|oxe Aue uoddng

0}1s9] wolsno Aue poddng = [€
jewo} 1sa] Junr v Hoddng =

137

1SI] WOISN2 JO uoneIoUUR
‘Alessaoau

Hodal ayy 0] apn|out

(s1s9L
v WUNrg) (yewuoy yip
1881 Ul 182 Wosno)
G a|npows 1S8] ¥ 9|npowl

(Hoday ajeisus
‘oju] Jeyles ‘sisa | TV Joylen)
Jojeisuag) toamm 188} |dY

/

—

(s159)
punr (s1s0L €
0 ‘e (1se1 0) wnrok)
ninr oz) 1591 1591
189} ¢ 9Inpow L 9Inpow

¢ s|npow

eyd|y 10} s1s8] N aiemyos

US 9,417,992 B2

Sheet 12 of 12

Aug. 16, 2016

U.S. Patent

Z1L b4

$1S1| WIOISND
ssao0.d

1|nsal s}s9)
11V 91862166y

ndinQ eu

%

- Ly

auibug Buinoday

1SI| WOISND 4O Uoljejouue

2NNy Ypm pasueyus aq uen

‘Alessanau

1 ‘181 aAIsnoxa Aue poddng

uodal ay} 0} apnoul
0} 1891 woisno Aue poddng

jewloj isa yunf Iy Hoddng -

<0y

(vodoy sjessus
‘oju] ;oylen ‘sisa | TV Jeyjen)
Jojessuan) poday 1s9] |dV

puno4
SN
g ‘v aInpop

A

puno4 s1se |

puno4 JON S1S8 |

(uonoadsoauy)

suibuz uonoele(

»

uopezienu)
auibug
Hoday 189 |dV

1S1| 1581 WOo1SND

uonesnT1se |

s}s8] 1un bunoslep Joj 8po) opnasd

US 9,417,992 B2

1
WEB PORTAL API TEST REPORT
GENERATION

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims priority of Provisional Patent
Application Ser. No. 62/054,593, filed on Sep. 24, 2014, the
contents of which is hereby incorporated by reference.

FIELD

One embodiment is directed generally to a computer sys-
tem, and in particular to a computer system that generates a
web portal.

BACKGROUND INFORMATION

An Application Programming Interface (“API”) is a col-
lection of software functions and procedures, referred to as
“API calls”, that can be executed by other software applica-
tions. Application developers can include links to existing
APIs in an application to make use of their functionality. This
link is generally seamless and end users of the application are
typically not aware that a separately developed API is being
invoked.

During API testing, a test harness application may be used
that links to the APIs and methodically exercises their func-
tionality in order to simulate the use of the API by end user
applications. API testing applications need to ensure that the
test harness varies parameters of the API calls in ways that
verify functionality and expose failures. This includes assign-
ing common parameter values as well as exploring boundary
conditions. API testing further needs to generate interesting
parameter value combinations for calls with two or more
parameters, and determine the content under which an API
call is made. Further, API testing typically needs to include
sequencing API calls to vary the order in which the function-
ality is exercised and to make the API produce useful results
from successive calls.

SUMMARY

One embodiment is a system for generating application
programming interface (“API”) test reports for a software
application. The system derives one or more Java APIs to be
tested from the software application and derives Java Unit
(“JUnit”) test methods used to test the Java APIs. The system
then maps each Java API with a corresponding JUnit test
method and generates one or more test reports.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an overview diagram of a portal system including
network elements that implement embodiments of the present
invention and/or interact with embodiments of the present
invention.

FIG. 2 is a block diagram of a computer server/system in
accordance with an embodiment of the present invention.

FIG. 3 is a block diagram illustrating the architecture of a
web portal that includes APIs that are tested in accordance
with embodiments of the present invention.

FIG. 4 is ablock diagram of a Java API Test Metrics Report
Generator in accordance with one embodiment.

FIGS. 5-9 illustrate some example API test reports gener-
ated by embodiments of the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG.101is a block diagram illustrating API testing in accor-
dance to one embodiment.

FIG. 11 is a block diagram illustrating API testing in accor-
dance to one embodiment.

FIG. 12 illustrates pseudo code for detecting JUnit tests to
be mapped to each API.

DETAILED DESCRIPTION

One embodiment, as part of automated API testing for a
web portal, generates and provides reports and identifies
untested APIs as part of a continuous testing framework.
Embodiments implement byte code introspection of the test
code to map the API to tests. Embodiments can be plugged
into any continuous testing framework to generate the reports.

Portal web sites, or “web portals”, are increasingly being
used to deliver complex and diverse content over a computer
network. A web portal is a web site containing one or more
portlets displayed on a web page. A portlet is a configurable
content area displayable on a web page that provides content
or performs one or more associated functions, or both. Port-
lets may display content that is obtained from a source remote
from the web server. For example, a portal web site may use
an arrangement of portlets to display web content on different
subject areas. The web content for each of the subject areas
need not be stored centrally to the web server, but instead may
be stored in a plurality of locations geographically removed,
but accessible to the portal web server. A portlet may be
configured such that it may display the information it obtains
to the web browser in a customized manner. A web portal
includes multiple APIs to external data sources and applica-
tions that need to be thoroughly tested in an automated man-
ner.

From an end user perspective, a portal is a web site with
pages that are organized by tabs or some other form(s) of
navigation. Each page can contain a nesting of sub-pages that
arerelated hierarchically. Any page can contain multiple port-
lets, task flows, or other elements, giving users access to
different information and tools in a single place. An admin-
istrator can modify a portal at runtime by, for example, adding
new pages or changing the look and feel. If authorized
through delegated administration, individual users can
modify their view of a portal as well.

FIG. 1 is an overview diagram of a portal system 100
including network elements that implement embodiments of
the present invention and/or interact with embodiments of the
present invention. Portal system 100 includes a web browser
101, an application/web server 110, databases 140, 141, and
a content provider 120.

A web browser 101 is any device capable of browsing
content over a computer network 111, such as the Internet,
and is operatively connected to application server 110. While
only one web browser 101 is shown in FIG. 1, multiple web
browsers 101 may be operatively connected to application
server 110. Web browser 101 and application server 110 may
communicate over computer network 111 using well-known
communication protocols, such as Transmission Control Pro-
tocol (“TCP”) and Internet Protocol (“IP”), or TCP/IP, HT TP
and Extensible Markup Language (“XML”).

Inone embodiment, application server 110 is a well-known
component that assembles and serves web pages to one or
more web browsers 101. Application server 110 in one
embodiment functions as an underneath middleware frame-
work, and further includes applications such as Java 2 Plat-
form, Enterprise Edition (“J2EE”) applications. As such,
application server 110 may serve web pages containing one or
more portlets. A portlet is a configurable content area display-

US 9,417,992 B2

3

able on a web page that displays content obtained from a
source remotely to the web server, or performs one or more
functions remotely to the web server. A portlet may be con-
figured such that it may display customized information to a
user.

A content provider 120 is a functional component that
provides content for a portlet in response to requests from
application server 110. Content provider 120 in one embodi-
ment is software operating on a separate hardware device
other than that executing application server 110. In other
embodiments, the functionality of content provider 120 and
application server 110 can be implemented on the same net-
work element. In some embodiments, content provider 120
may be implemented using a cross-platform component
architecture such as the JavaBean architecture. Such an
embodiment is advantageous when deploying content pro-
viders 120 over multiple platforms.

Application server 110 assembles the requested web page
using any content received from content provider 120 and
data stored in an associated central repository concerning the
organization and presentation of the web page. In one
embodiment, the data stored in the central repository that
application server 110 uses in assembling the requested web
page includes data concerning the following attributes of the
web page: style, layout, content resident thereon, portlets
displayed thereon, items displayed thereon, groups, folders
and user permissions for the web page. In other words, appli-
cation server 110 manages data concerning the appearance
and operation of portal web sites in a central repository, such
as a database, and uses that information to assemble the web
page, along with content received from content providers
120. The data application server 110 uses in rendering web
pages may be directed towards visual aspects of the page
(e.g., style or layout information), or it may be directed
towards operational aspects of the page (e.g., what portlets are
displayed, permissions regarding access to portions of the
web page, etc.).

In embodiments of the invention, web pages are dynami-
cally generated based upon data stored in tables in a database.
In some embodiments, the content of the web page are stored
in tables in a database, including databases 140, 141.

FIG. 2 is a block diagram of a computer server/system 10
in accordance with an embodiment of the present invention.
System 10 can be used to implement any of the network
elements shown in FIG. 1 as necessary in order to implement
any of the functionality of embodiments of the invention
disclosed in detail below. Although shown as a single system,
the functionality of system 10 can be implemented as a dis-
tributed system. Further, the functionality disclosed herein
can be implemented on separate servers or devices that may
be coupled together over a network. Further, one or more
components of system 10 may not be included. For example,
for functionality of application server 110, system 10 may be
a server that in general has no need for a display 24 or one or
more other components shown in FIG. 2.

System 10 includes a bus 12 or other communication
mechanism for communicating information, and a processor
22 coupled to bus 12 for processing information. Processor 22
may be any type of general or specific purpose processor.
System 10 further includes a memory 14 for storing informa-
tion and instructions to be executed by processor 22. Memory
14 can be comprised of any combination of random access
memory (“RAM”), read only memory (“ROM”), static stor-
age such as a magnetic or optical disk, or any other type of
computer readable media. System 10 further includes a com-
munication device 20, such as a network interface card, to

10

15

20

25

30

35

40

45

50

55

60

4

provide access to a network. Therefore, a user may interface
with system 10 directly, or remotely through a network, or
any other method.

Computer readable media may be any available media that
can be accessed by processor 22 and includes both volatile
and nonvolatile media, removable and non-removable media,
and communication media. Communication media may
include computer readable instructions, data structures, pro-
gram modules, or other data in a modulated data signal such
as a carrier wave or other transport mechanism, and includes
any information delivery media.

Processor 22 may further be coupled via bus 12 to a display
24, such as a Liquid Crystal Display (“LCD”). A keyboard 26
and a cursor control device 28, such as a computer mouse,
may further be coupled to bus 12 to enable a user to interface
with system 10 on an as needed basis.

In one embodiment, memory 14 stores software modules
that provide functionality when executed by processor 22.
The modules include an operating system 15 that provides
operating system functionality for system 10. The modules
further include a web portal API testing module 16 for testing
a web portal API and generating test reports, and all other
functionality disclosed herein. System 10 can be part of a
larger system, such as added functionality to “WebCenter
Portal” from Oracle Corp. Therefore, system 10 can include
one or more additional functional modules 18 to include the
additional functionality. A database 17 is coupled to bus 12 to
provide centralized storage for modules 16 and 18.

FIG. 3 is a block diagram illustrating the architecture of a
web portal 300 that includes APIs that are tested in accor-
dance with embodiments of the present invention. The com-
ponents of portal 300 includes a resource definition database
301 and a Metadata Services (“MDS”) database 302. MDS
302 supports personalization of the portal and stores user and
runtime settings, and in one embodiment keeps metadata in
the areas of a file-based repository, dictionary tables accessed
by build-in functions and a metadata registry. Portal 300
further includes a portal builder 306 and portal runtime 305
which assist in generating and running the portal.

Portal 300 further includes a set of web-based REpresen-
tational State Transfer REST (“REST”) APIs for retrieving
and modifying server data dynamically from the client.
Shown in FIG. 3 are Schema APIs 303 and Portal APIs 307.
Portal APIs 307 include an Application Development Frame-
work (“ADF”) 308 interface and a WebLogic Scripting Tool
(“WLST”) interface 310. All of the components shown in
FIG. 3 are Java based components.

In one embodiment, the APIs that are tested are Java based
APIs. When it comes to testing a product API code line,
known methods would typically include writing Java Unit
(“JUnit”) test cases for testing specific API functions. A JUnit
is a regression testing framework used by developers to
implement unit testing in Java and accelerate programming
speed and increase the quality of code. Known methods
would then execute each of the API JUnit tests, and create a
report for each API JUnit test to show a summary of the test
results.

However, the known methods oftesting APIs have multiple
drawbacks. For one, regarding API method naming conven-
tion, if an API does not have a proper name it is neglected
unless a user performs a detailed code review. Further, there is
no clear indication about the API method information, and no
“percentage” coverage regarding the APIs (e.g., where this is
tested, how many invocations has been done, etc.). Further,
there is no overall report statistics regarding the APl usage in
the module (i.e., the group of classes that are responsible for
a feature of the software application).

US 9,417,992 B2

5

In contrast, embodiments perform API testing in which the
reports include API test counts as metrics for measuring the
quality of the product being tested. Since customers and/or
other modules may use the tested APIs directly, having met-
rics indicating what percentage of APIs got tested can be very
useful information in evaluating the overall quality of the
product. Further, there is a need to be able to view all the APIs
listed in one place, with corresponding test cases next to each.
Therefore, embodiments provide an automatic way of check-
ing on the API calls, referencing points, and providing overall
statistics as a report.

FIG. 4 is ablock diagram of a Java API Test Metrics Report
Generator 402 in accordance with one embodiment. In one
embodiment, Report Generator 402 is implemented by Web
Portal API Testing module 16 of FIG. 2. API Test Metrics
Report Generator 402 is based on byte code introspection that
can be used as a plug-in to generate API test reports. The byte
code introspection maps the API to JUnit tests, and does not
require developers to add an annotation tag to each Java API
because the annotations are derived from the JUnit tests.

As shown in FIG. 4, at 411, Report Generator 402 derives
all the API Java interfaces for the web portal at a Java Source
403 to be tested using “Java Reflection.” In one embodiment,
the APIs derived at 411 would include APIs 303 and 307 of
FIG. 3. Java Reflection makes it possible to inspect classes,
interfaces, fields and methods at runtime, without knowing
the names of the classes, methods, etc. at compile time. It is
also possible to instantiate new objects, invoke methods and
get/set field values using reflection

At 412, using Java Reflection, Report Generator 402
derives all of the Java Unit Tests methods 404 that have an
“@Test” annotation, or an equivalent annotation. The anno-
tation in one embodiment is derived from a JUnit test case. A
JUnit test program has the annotation to identify APIs to test.

At 413, using Java Reflection, Report Generator 402 adds
more Junit test methods based on a custom @ Test Annotation.

At 414, using the custom list, Report Generator 402 makes
custom changes to include/exclude APIs from the derived
API Junit methods. A custom list is a list of API which is
desired to specifically include/exclude in the API test report
for any reason. For example, certain methods are not included
by the traditional JUnit test framework but a user may still
want it tested by embodiments of the invention.

Using byte code introspection, Report Generator 402 than
maps each API (Java interface) with the corresponding JUnit
test methods. Finally, using test integration with “Jenkins”, or
an equivalent integration tool, the overall API method and test
mapping results can be shown on Jenkins report 405 on a
daily basis, or any other selectable timeframe. “Jenkins” is an
open source continuous integration tool written in Java. Jen-
kins provides continuous integration services for software
development. It is a server-based system running in a servlet
container such as Apache Tomcat. The report is generated by
running the API test program as a standalone Java program.

Reports generated by embodiments of the invention can
include daily reports showing the percentage of the web por-
tal Java and REST APIs that have corresponding tests, and
identify untested APIs as part of a continuous testing frame-
work. Embodiments can be plugged into any continuous test-
ing framework to generate the daily reports. Both Java inter-
faces and declared Java classes that have no corresponding
interface can be monitored. To achieve this, byte code intro-
spection of the test code is introduced to map the API to tests.
In this approach, there is no need for developers to add an
annotation tag to each Java API. Instead, byte code introspec-

25

30

35

40

45

55

60

6

tion is used to generate the reports and compare the list of
APIs with those all tests registered using the standard JUnit
testing framework.

FIGS. 5-9 illustrate some example API test reports gener-
ated by embodiments of the present invention.

FIG. 5 illustrates an API test report 500 that lists APIs of a
web portal that does not have any available corresponding
API tests available in accordance with one embodiment. As
long as an API exists, there should be a corresponding test.
Therefore, FIG. 5 identifies these potential flaws in the test-
ing.

FIG. 6 illustrates an API test report 600 that shows how
each API is being tested, and its test methods in accordance
with one embodiment. Report 600 allows a user to determine
if an API is being properly tested by mapping it to a test.
Applications may include “methods” that are without corre-
sponding tests, but those are not APIs. However, since each
component to be tested has its own definition of APIs, the
“methods” can be labeled as APIs so they can be tested.

FIG. 7 illustrates an API test report 700 that shows the
overall test report statistics based on certain modules in accor-
dance with one embodiment. The “not tested” at 701 may be
flagged or highlighted as it should be addressed by the module
owner. Each module is identified as a specific group of soft-
ware that is responsible for a certain aspect of the software
(e.g., a “mail” module is responsible for sending out emails
within an enterprise software application that has hundreds of
other features).

FIG. 8 illustrates an API test report 800 listing an overall
list of modules that is being executed on a Jenkins server in
accordance with one embodiment. Different colors or other
methods are used to indicated modules with all test passed,
partially passed, and all failed.

FIG. 9illustrates an API test report 900 listing another view
of showing the overall test result on the Jenkins server in
accordance with one embodiment. In report 900, all modules
listed in the columns and on a pie chart 901 is displayed with
percentage information.

FIG.101is a block diagram illustrating API testing in accor-
dance to one embodiment. As shown in FIG. 10, a software
application “Alpha” includes five modules (modules 1-5).
Each module may include Java APIs. Report generator 402
gathers all of the APIs, gathers information on the APIs and
generates one or more reports.

FIG. 11 is a block diagram illustrating API testing in accor-
dance to one embodiment. In FIG. 11, the report generator
402 maps each Java API to a corresponding JUnit test. Spe-
cifically, for module 1, since it includes 10 APIs, 10 JUnit 3
tests are performed. For module 2, since it includes no APIs,
no tests are mapped. For module 3, since it includes 50 APIs,
20 JUnit 3 tests are performed, and 30 JUnit 4 tests are
performed. For module 4, a custom test in a different format
is performed since it includes 10 custom APIs. For module 5,
since it includes 3 APIs, 3 JUnit 4 tests are performed.

FIG. 12 illustrates pseudo code for detecting JUnit tests to
be mapped to each API. A detection engine implements byte
code introspection of the test code to map the API to tests.

As disclosed, embodiments integrate both JUnit test and
Java Reflection to test Java APIs and generate test reports for
software applications and Java APl/features of software
applications. Embodiments, based on Java Reflection can
detect how many APIs are defined in the feature, at the same
time can detect if these APIs are being tested in JUnit, and
integrate them together to generate reports. The reports can
showed the number of Java APIs that are defined and how
many of them missed the test. This will allow a user to

US 9,417,992 B2

7

determine if the feature is fully tested. If there are APIs not
being tested, the testing will need to be modified. Therefore,
embodiments provide a test automation framework to detect
APIs and the matching tests, and auto-generate reports.

Several embodiments are specifically illustrated and/or
described herein. However, it will be appreciated that modi-
fications and variations of the disclosed embodiments are
covered by the above teachings and within the purview of the
appended claims without departing from the spirit and
intended scope of the invention.

What is claimed is:

1. A computer-executed method of generating application
programming interface (API) test reports for a software appli-
cation, the method comprising:

deriving one or more Java APIs to be tested from the

software application;

deriving Java Unit (JUnit) test methods used to test the Java

APIs;
mapping each Java API with a corresponding JUnit test
method by using byte code introspection; and
generating one or more test reports.

2. The method of claim 1, wherein the deriving one or more
Java APIs to be tested comprises using Java Reflection.

3. The method of claim 1, wherein the deriving JUnit tests
comprises searching for annotations.

4. The method of claim 3, wherein the annotations are
derived from a JUnit test case.

5. The method of claim 1, wherein the one or more test
reports comprise a percentage of Java APIs that were tested.

6. The method of claim 1, wherein the one or more test
reports comprise a listing of Java APIs that do not have a
corresponding JUnit test.

7. A non-transitory computer-readable medium having
instructions stored thereon that, when executed by a proces-
sor, cause the processor to generating application program-
ming interface (API) test reports for a software application,
the generating comprising:

deriving one or more Java APIs to be tested from the

software application;

deriving Java Unit (JUnit) test methods used to test the Java

APIs;
mapping each Java API with a corresponding JUnit test
method by using byte code introspection; and
generating one or more test reports.

10

15

20

25

30

35

40

8

8. The computer-readable medium of claim 7, wherein the
deriving one or more Java APIs to be tested comprises using
Java Reflection.

9. The computer-readable medium of claim 7, wherein the
deriving JUnit tests comprises searching for annotations.

10. The computer-readable medium of claim 9, wherein the
annotations are derived from a JUnit test case.

11. The computer-readable medium of claim 7, wherein the
one or more test reports comprise a percentage of Java APls
that were tested.

12. The computer-readable medium of claim 7, wherein the
one or more test reports comprise a listing of Java APIs that do
not have a corresponding JUnit test.

13. A Java application programming interface (API) test-
ing system comprising:

a processor;

a storage device coupled to the processor that stores

instructions;

wherein the instructions, when executed by the processor,

cause the system to perform testing comprising:

deriving one or more Java APIs to be tested from the
software application;

deriving Java Unit (JUnit) test methods used to test the
Java APIs;

mapping each Java API with a corresponding JUnit test
method by using byte code introspection; and

generating one or more test reports.

14. The testing system of claim 13, wherein the deriving
one or more Java APIs to be tested comprises using Java
Reflection.

15. The testing system of claim 13, wherein the deriving
JUnit tests comprises searching for annotations.

16. The testing system of claim 15, wherein the annotations
are derived from a JUnit test case.

17. The testing system of claim 13, wherein the one or more
test reports comprise a percentage of Java APIs that were
tested.

18. The testing system of claim 13, wherein the one or more
test reports comprise a listing of Java APIs that do not have a
corresponding JUnit test.

#* #* #* #* #*

